题目内容
在数列{an}中,a1=1,an+1=2an+2n,
(Ⅰ)设bn=
,证明:数列{bn}是等差数列;
(Ⅱ)求数列{
}的前n项和Sn.
(Ⅰ)设bn=
| an |
| 2n-1 |
(Ⅱ)求数列{
| n2 |
| an |
分析:(I)要证明数列{bn}是等差数列,只要证明bn+1-bn=d(常数),结合已知递推公式可证
(Ⅱ)由(Ⅰ)得bn=1+(n-1)•1=n=
,从而可求
,利用错位相减可求数列的和
(Ⅱ)由(Ⅰ)得bn=1+(n-1)•1=n=
| an |
| 2n-1 |
| n2 |
| an |
解答:(Ⅰ)证明:由an+1=2an+2n得bn+1=
=
=
+1=bn+1
又b1=a1=1,因此数列{bn}是首项为1,公差为1的等差数列
(Ⅱ)解:由(Ⅰ)得bn=1+(n-1)•1=n=
,
∴an=n•2n-1,
∴
=
则Sn=1+
+
+
+…+
,…(1)
Sn=
+
+
+
+…
+
,…(2)
(1)-(2)得
Sn=1+
+
+
+…+
-
.
=
-
=2-(2+n)
.
∴Sn=4-(2+n)
| an+1 |
| 2n |
| 2an+2n |
| 2n |
| an |
| 2n-1 |
又b1=a1=1,因此数列{bn}是首项为1,公差为1的等差数列
(Ⅱ)解:由(Ⅰ)得bn=1+(n-1)•1=n=
| an |
| 2n-1 |
∴an=n•2n-1,
∴
| n2 |
| an |
| n |
| 2n-1 |
则Sn=1+
| 2 |
| 2 |
| 3 |
| 22 |
| 4 |
| 23 |
| n |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n-1 |
| 2n-1 |
| n |
| 2n |
(1)-(2)得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| n |
| 2n |
=
1•[1-(
| ||
1-
|
| n |
| 2n |
| 1 |
| 2n |
∴Sn=4-(2+n)
| 1 |
| 2n-1 |
点评:本题主要考查了利用数列的递推公式构造等差数列,及等差数列的定义在证明中的应用,数列的错位相减求和方法的应用
练习册系列答案
相关题目