题目内容
已知向量
=(sinα,-
),
=(1,2cosα),
•
=
,α∈(0,
)
(1)求sin2α及sinα的值;
(2)设函数f(x)=5sin(-2x+
+α)+2cos2x(x∈[
,
]),求x为何值时,f(x)取得最大值,最大值是多少,并求f(x)的单调增区间.
| a |
| 1 |
| 2 |
| b |
| a |
| b |
| 1 |
| 5 |
| π |
| 2 |
(1)求sin2α及sinα的值;
(2)设函数f(x)=5sin(-2x+
| π |
| 2 |
| π |
| 24 |
| π |
| 2 |
分析:(1)由题意可得,
•
=sinα-cosα=
,平方可求sinα-cosα,sin2α,进而可求sinα+cosα,从而可求sinα
(2)由题意可得f(x)=5cos(2x-α)+1+cos2x=4
sin(2x+
)+1,结合
≤x≤
可求函数的最大值,要使得函数y=f(x)单调递增,则-
π+2kπ≤2x+
≤ 2kπ+
π
结合x∈[
,
]可求
| a |
| b |
| 1 |
| 5 |
(2)由题意可得f(x)=5cos(2x-α)+1+cos2x=4
| 2 |
| π |
| 4 |
| π |
| 24 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
结合x∈[
| π |
| 24 |
| π |
| 2 |
解答:解:(1)∵
•
=sinα-cosα=
∴(sinα-cosα)2=1-2inαcosα=1-sin2α=
∴sin2α=
(2分)
∵(sinα+cosα)2=1+sin2α=
∴sinα+cosα=
∴sinα=
,cosα=
(5分)
(2)∵f(x)=5cos(2x-α)+1+cos2x
=5(cos2xcosα+sin2xsinα)+cos2x+1
=5(
cos2x+
sin2x)+cos2x+1
=4cos2x+4sin2x+1
=4
sin(2x+
)+1(8分)
∵
≤x≤
∴
≤2x+
≤
当x=
时,f(x)max=f(
)=1+2
(10分)
要使得函数y=f(x)单调递增
∴-
π+2kπ≤2x+
≤ 2kπ+
π
∴-
+kπ≤x≤
+kπ(k∈Z)
∵x∈[
,
]
∴y=f(x)的单调递增区间为[
,
](12分)
| a |
| b |
| 1 |
| 5 |
∴(sinα-cosα)2=1-2inαcosα=1-sin2α=
| 1 |
| 25 |
∴sin2α=
| 24 |
| 25 |
∵(sinα+cosα)2=1+sin2α=
| 49 |
| 25 |
∴sinα+cosα=
| 7 |
| 5 |
∴sinα=
| 3 |
| 5 |
| 4 |
| 5 |
(2)∵f(x)=5cos(2x-α)+1+cos2x
=5(cos2xcosα+sin2xsinα)+cos2x+1
=5(
| 3 |
| 5 |
| 4 |
| 5 |
=4cos2x+4sin2x+1
=4
| 2 |
| π |
| 4 |
∵
| π |
| 24 |
| π |
| 2 |
∴
| π |
| 3 |
| π |
| 4 |
| 5π |
| 4 |
当x=
| π |
| 24 |
| π |
| 24 |
| 6 |
要使得函数y=f(x)单调递增
∴-
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
∴-
| 3π |
| 8 |
| π |
| 8 |
∵x∈[
| π |
| 24 |
| π |
| 2 |
∴y=f(x)的单调递增区间为[
| π |
| 24 |
| π |
| 8 |
点评:本题主要考查了向量的数量积的基本运算,三角函数的二倍角公式、赋值角公式在三角函数化简中的应用,正弦函数的单调区间的求解,属于向量与三角的综合应用.
练习册系列答案
相关题目