题目内容
若sin(
-x)=
,0<x<
,则
的值为( )
| π |
| 4 |
| 5 |
| 13 |
| 3π |
| 4 |
cos(
| ||
| cos2x |
A.±
| B.
| C.±
| D.
|
∵0<x<
∴
>
-x>-
,
cos(
-x)>0,cos(
-x)=
=
=
.
∵(
-x)+(
+x)=
,
∴cos(
+x)=sin(
-x)①.
又cos2x=sin(
-2x)
=sin2(
-x)=2sin(
-x)cos(
-x)②,
将①②代入原式,∴
=
=
=
故选B
| 3π |
| 4 |
∴
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
cos(
| π |
| 4 |
| π |
| 4 |
1-sin2(
|
1-(
|
| 12 |
| 13 |
∵(
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
∴cos(
| π |
| 4 |
| π |
| 4 |
又cos2x=sin(
| π |
| 2 |
=sin2(
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
将①②代入原式,∴
cos(
| ||
| cos2x |
| 1 | ||
2cos(
|
| 1 | ||
2×
|
| 13 |
| 24 |
故选B
练习册系列答案
相关题目