题目内容

7.一个多面体的直观图和三视图如图,M是A1B的中点,N是棱B1C1上的任意一点(含顶点).

①当点N是棱B1C1的中点时,MN∥平面ACC1A1
②MN⊥A1C;
③三棱锥N-A1BC的体积为VN-A${\;}_{{\;}_{1}}$BC=$\frac{1}{6}$a3
④点M是该多面体外接球的球心.
其中正确的是①②③④.

分析 本题是直观图和三视图的综合分析题,要抓住M是A1B的中点,N是棱B1C1上的任意一点(含顶点)就是动点,从三视图抓住直观图的特征,结合下情况分别证明.

解答 解:①M连接AB中点E,N连接BC中点F,得到MNFE平行于平面ACC1A1
面面平行⇒线面平行,①正确;
②M连接A1C中点G,连接C1G,A1C⊥平面MNC1G.∴MN⊥A1C;②正确;
③三棱锥N-A1BC的体积为VN-A=$\frac{1}{3}•{S}_{{BCA}_{1}}•M{B}_{1}$=$\frac{1}{3}×\frac{1}{2}•C{A}_{1}•BC•M{B}_{1}$=$\frac{1}{6}$a3,③正确;
④由三视图可知:此多面体是正方体切割下来了的,M是A1B的中点(空间对角线中点),是正方体中心,∴点M是该多面体外接球的球心.故④正确.
故答案为:①②③④.

点评 本题考查了直观图和三视图的关系.通过三视图抓住直观图的特征;线面垂直的判定和性质,遇中点找中点的思想.考虑补形来确定球心.考查空间想象能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网