题目内容
已知向量
=(λsinα,λcosα),
=(cosβ,sinβ),且α+β=
,其中O为原点.
(Ⅰ)若λ<0,求向量
与
的夹角;
(Ⅱ)若λ∈[-2,2],求|
|的取值范围.
| OA |
| OB |
| 5π |
| 6 |
(Ⅰ)若λ<0,求向量
| OA |
| OB |
(Ⅱ)若λ∈[-2,2],求|
| AB |
分析:(Ⅰ)由题意可得|
|,|
|,
•
,代入夹角公式计算可得;
(Ⅱ)|
|=|
-
|,代入已知计算可得关于λ的函数式,由二次函数的知识可得相应的最值,可得范围.
| OA |
| OB |
| OA |
| OB |
(Ⅱ)|
| AB |
| OB |
| OA |
解答:解:(Ⅰ)由题意可得|
|=
=-λ,
|
|=
=1,
•
=λsinαcosβ+λcosαsinβ
=λsin(α+β)=λsin
=
λ,设向量
与
的夹角为θ,
则cosθ=
=-
,又因为θ∈[0,π],
所以向量
与
的夹角θ为
;
(Ⅱ)|
|=|
-
|=
=
=
=
=
,由于λ∈[-2,2],
由二次函数的知识可知:当λ=
时,上式有最小值
,
当λ=-2时,上式有最大值
,
故|
|的取值范围是[
,
]
| OA |
| (λsinα)2+(λcosα)2 |
|
| OB |
| cos2β+sin2β |
| OA |
| OB |
=λsin(α+β)=λsin
| 5π |
| 6 |
| 1 |
| 2 |
| OA |
| OB |
则cosθ=
| ||
| -λ×1 |
| 1 |
| 2 |
所以向量
| OA |
| OB |
| 2π |
| 3 |
(Ⅱ)|
| AB |
| OB |
| OA |
| (cosβ-λsinα)2+(sinβ-λcosα)2 |
=
| 1+λ2-2λ(sinαcosβ+cosαsinβ) |
| 1+λ2-2λsin(α+β) |
=
| 1+λ2-λ |
(λ-
|
由二次函数的知识可知:当λ=
| 1 |
| 2 |
| ||
| 2 |
当λ=-2时,上式有最大值
| 7 |
故|
| AB |
| ||
| 2 |
| 7 |
点评:本题考查数量积表示两个向量的夹角,涉及三角函数的运算,属中档题.
练习册系列答案
相关题目