题目内容
已知向量
=
=(cosα,sinα),
=
=(0,2)
=
=(2cosβ,2sinβ),其中O为坐标原点,且0<α<
<β<π
(1)若
⊥(
-
),求β-α的值;
(2)若
•
=2,
•
=
,求△OAB的面积S.
| OA |
| a |
| OC |
| c |
| OB |
| b |
| π |
| 2 |
(1)若
| a |
| b |
| a |
(2)若
| OB |
| OC |
| OA |
| OC |
| 3 |
(1)∵
⊥(
-
)∴
•(
-
)=0
∴2cosαcosβ+2sinαsinβ-1=0
即cos(α-β)=
∵0<α<
<β<π∴0<β-α<π∴β-α=
(2)∵
•
=2,
•
=
∴sinβ=
sinα=
∴cosβ=
cosα=
∴
•
=2cosαcosβ+2sinαsinβ=0
∴
⊥
∴S=
|
|•|
|=
×1×2=1
| a |
| b |
| a |
| a |
| b |
| a |
∴2cosαcosβ+2sinαsinβ-1=0
即cos(α-β)=
| 1 |
| 2 |
∵0<α<
| π |
| 2 |
| π |
| 3 |
(2)∵
| OB |
| OC |
| OA |
| OC |
| 3 |
∴sinβ=
| 1 |
| 2 |
| ||
| 2 |
∴cosβ=
| ||
| 2 |
| 1 |
| 2 |
∴
| OA |
| OB |
∴
| OA |
| OB |
∴S=
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
练习册系列答案
相关题目