题目内容
将一颗质地均匀的正四面体骰子(四个面的点数分别为1,2,3,4)先后抛掷两次,记第一次出现的点数为
,第二次出现的点数为
.
(1)记事件
为“
”,求
;
(2)记事件
为“
”,求
.
(1)
;(2)
.
解析试题分析:(1)先用穷举法得到先后抛掷两次,出现点数
的基本事件总数
,从中找出满足
的事件数
,根据古典概型的概率计算公式即可得到所求的概率
;(2)在
事件发生的前提下,找出事件
包含的事件数
,进而可得条件概率
.
(1)投掷骰子2次得到的所有结果为:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
共16种 2分
事件
包含的结果有:
,
,
,
,
,
共6种 4分
则
6分
(2)在事件
发生的前提下,事件
包含的结果有:
,
(共2种) 10分
则
13分.
考点:1.古典概率;2.条件概率.
练习册系列答案
相关题目
有甲、乙两个班进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表:
| | 优秀 | 非优秀 | 总计 |
| 甲班 | 20 | | |
| 乙班 | | 60 | |
| 总计 | | | 210 |
已知从全部210人中随机抽取1人为优秀的概率为
(1)请完成上面的2×2列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”.
附:
| 参考数据 | 当 |
| 当 | |
| 当 | |
| 当 |