题目内容
(本小题满分16分)已知函数.
(1)若关于的不等式的解集为,求实数的值;
(2)设,若不等式对任意实数都成立,求实数的取值范围;
若不等式的解集为,则值是( )
A.-10 B.-14 C.10 D.14
下列程序执行后输出的结果是( )
A.3 B.6 C.10 D.15
对于直角坐标平面内的任意两点A(x,y)、B(x,y),定义它们之间的一种“距离”:
‖AB‖=︱x-x︱+︱y-y︱.
给出下列三个命题:
①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命题的个数为 ( )
A.0 B.1 C.2 D.3
(本小题10分)全集,若集合,,则
(1)求,;
(2)若集合C=,满足时,求的取值范围;(结果用区间或集合表示)[
(本题满分14分) 本题共有3个小题,第1小题4分,第2小题5分,第3小题5分.
设等比数列的前项的和为,公比为.
(1)若成等差数列,求证:成等差数列;
(2)若(为互不相等的正整数)成等差数列,试问数列中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;
(3)若为大于的正整数.试问中是否存在一项,使得恰好可以表示为该数列中连续两项的和?请说明理由.
设在约束条件下,目标函数的最大值为4,则的值为 ,目标函数的最小值为________.
已知函数f(x)=4x2-4mx+1,在(-∞,-2)上递减,在(-2,+∞)上递增.则f(x)在[1,2]上的值域为_______.
函数f(x)=㏑x的图像与函数g(x)=x2-4x+4的图像的交点个数为( )