题目内容
函数f(x)=Acos(ωx+
)+3(A>0,ω>0,x∈R)的最大值是5,周期为π.
(1)求A和ω的值;
(2)若θ∈(0,
),f(θ)=
,求f(θ-
)的值.
| π |
| 6 |
(1)求A和ω的值;
(2)若θ∈(0,
| π |
| 3 |
| 21 |
| 5 |
| π |
| 12 |
分析:(1)由题意可得 A+3=5,由此求得A=2.再根据周期T=
=π,求得ω的值.
(2)由(1)可得 f(x)=2cos(2x+
)+3,根据f(θ)=
,求得cos(2θ+
) 的值,结合θ的范围,求得sin(2θ+
)的值,再利用两角和差的余项公式求得cos2θ的值,从而求得f(θ-
)=2cos2θ+3的值.
| 2π |
| ω |
(2)由(1)可得 f(x)=2cos(2x+
| π |
| 6 |
| 21 |
| 5 |
| π |
| 6 |
| π |
| 6 |
| π |
| 12 |
解答:解:(1)由题意可得 A+3=5,∴A=2.∵周期T=
=π,∴ω=2.
(2)由(1)可得 f(x)=2cos(2x+
)+3,∵f(θ)=2cos(2θ+
)+3=
,∴cos(2θ+
)=
.
又∵θ∈(0,
),∴2θ+
∈(
,
),∴sin(2θ+
)=
=
=
.
∴cos2θ=cos[(2θ+
)-
]=cos(2θ+
)cos
+sin(2θ+
)sin
=
×
+
×
=
,
∴f(θ-
)=2cos2θ+3=2×
+3=
.
| 2π |
| ω |
(2)由(1)可得 f(x)=2cos(2x+
| π |
| 6 |
| π |
| 6 |
| 21 |
| 5 |
| π |
| 6 |
| 3 |
| 5 |
又∵θ∈(0,
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
1-cos2(2θ+
|
1-(
|
| 4 |
| 5 |
∴cos2θ=cos[(2θ+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
3
| ||
| 10 |
∴f(θ-
| π |
| 12 |
3
| ||
| 10 |
3
| ||
| 5 |
点评:本题主要考查函数y=Asin(ωx+φ)的图象和性质,两角和差的余弦公式、同角三角函数的基本关系,属于中档题.
练习册系列答案
相关题目