题目内容
数列的前项和为,已知,,则 .
①②
①-②得,所以即,当,,所以=2
(06年安徽卷理)(12分)
数列的前项和为,已知
(Ⅰ)写出与的递推关系式,并求关于的表达式;
(Ⅱ)设,求数列的前项和。
(本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列的通项公式;
(II)记,设数列的前项和为,求证:对任意正整数都有;
(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。
设数列的前项和为,已知
(Ⅰ)求证:数列为等差数列,并写出关于的表达式;
(Ⅱ)若数列前项和为,问满足的最小正整数是多少? .
设数列的前项和为,已知.(1)证明:当时,是等比数列;(2)求的通项公式.
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列的通项公式;
(II)记,设数列的前项和为,求证:对任意正整数都有;
(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。