题目内容

4.已知正项数列{an},前n项和为Sn,且有$\sqrt{{S}_{n}}$=λan+c.
(1)求证:λc≤$\frac{1}{4}$;
(2)若λ=1,c=0,求证:Sn≥($\frac{n+1}{2}$)2
(3)若2a2=a1+a3,求证:{an}为等差数列.

分析 (1)由$\sqrt{{S}_{n}}$=λan+c,可得n=1时,a1=$(λ{a}_{1}+c)^{2}$,化为${λ}^{2}{a}_{1}^{2}$+(2λc-1)a1+c2=0,λ=0时,此时λc≤$\frac{1}{4}$;当λ≠0时,△≥0,解出即可证明.
(2)λ=1,c=0,可得:$\sqrt{{S}_{n}}$=an,即Sn=${a}_{n}^{2}$.利用数学归纳法即可证明.
(3)令a2-a1=d>0,由已知可得:$\sqrt{{a}_{1}}$=λa1+c,$\sqrt{{a}_{1}+{a}_{2}}=λ{a}_{2}$+c,$\sqrt{{a}_{1}+{a}_{2}+{a}_{3}}$=λa3+c,化简整理即可把λ,c,a1都用d表示,再利用递推关系即可得出.

解答 证明:(1)∵$\sqrt{{S}_{n}}$=λan+c,∴n=1时,a1=$(λ{a}_{1}+c)^{2}$,
化为${λ}^{2}{a}_{1}^{2}$+(2λc-1)a1+c2=0,
λ=0时,化为${a}_{1}={c}^{2}$,此时λc≤$\frac{1}{4}$;
当λ≠0时,△=(2λc-1)2-4λ2c2≥0,解得λc≤$\frac{1}{4}$.
综上可得:λc≤$\frac{1}{4}$成立.
(2)λ=1,c=0,可得:$\sqrt{{S}_{n}}$=an,即Sn=${a}_{n}^{2}$.
利用数学归纳法证明:①当n=1时,${a}_{1}={a}_{1}^{2}$>0,解得a1=1,a1≥$(\frac{1+1}{2})^{2}$=1成立.
②假设当n=k(k∈N*)时,${S}_{k}={a}_{k}^{2}$≥$(\frac{k+1}{2})^{2}$,即${a}_{k}≥\frac{k+1}{2}$成立.
则n=k+1时,Sk+1=Sk+ak+1
∴${a}_{k+1}^{2}$-ak+1=${S}_{k}={a}_{k}^{2}$≥$(\frac{k+1}{2})^{2}$,
∴${a}_{k+1}^{2}$-ak+1-$(\frac{k+1}{2})^{2}$≥0,解得ak+1≥$\frac{(k+1)+1}{2}$,
因此Sk+1≥$(\frac{k+1+1}{2})^{2}$成立.
综上可得:Sn≥($\frac{n+1}{2}$)2对于?n∈N*成立.
(3)令a2-a1=d>0,
∵$\sqrt{{a}_{1}}$=λa1+c,$\sqrt{{a}_{1}+{a}_{2}}=λ{a}_{2}$+c,
$\sqrt{{a}_{1}+{a}_{2}+{a}_{3}}$=λa3+c,
∴$\sqrt{{a}_{1}+{a}_{2}}$-$\sqrt{{a}_{1}}$=λd,
$\sqrt{{a}_{1}+{a}_{2}+{a}_{3}}$-$\sqrt{{a}_{1}}$=2λd,
∴a1+a2=${a}_{1}+{λ}^{2}{d}^{2}$+$2λd\sqrt{{a}_{1}}$,化为a22d2+$2λd\sqrt{{a}_{1}}$,
a1+a2+a3=a1+4λ2d2+$4λd\sqrt{{a}_{1}}$,化为a3=3λ2d2+$2λd\sqrt{{a}_{1}}$,
相减可得:2λ2d=1.
∴λ=$\sqrt{\frac{1}{2d}}$=$\frac{1}{\sqrt{2d}}$.
把$\sqrt{{a}_{1}}$=λa1+c代入a22d2+$2λd\sqrt{{a}_{1}}$,
可得:a1+d=λ2d2+2λd(λa1+c),
化为:λc=$\frac{1}{4}$,
∴c=$\frac{\sqrt{2d}}{4}$,λa1=c,∴a1=$\frac{d}{2}$.
∴$\sqrt{{S}_{n}}$=$\frac{1}{\sqrt{2d}}{a}_{n}$+$\frac{\sqrt{2d}}{4}$,
∴Sn=$\frac{1}{2d}{a}_{n}^{2}$+$\frac{1}{2}{a}_{n}$+$\frac{1}{8}d$.
∴n≥2时,an=Sn-Sn-1=$\frac{1}{2d}{a}_{n}^{2}$+$\frac{1}{2}{a}_{n}$+$\frac{1}{8}d$-$(\frac{1}{2d}{a}_{n-1}^{2}+\frac{1}{2}{a}_{n-1}+\frac{1}{8}d)$,
化为:(an+an-1)(an-an-1-d)=0,
∵an+an-1>0,
∴an-an-1=d=常数,a1=$\frac{d}{2}$.
∴{an}为等差数列.

点评 本题考查了数列的递推关系、等差数列的都用及其通项公式、方程的解法、数学归纳法,考查了变形能力、推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网