题目内容
(12分)已知函数
有极值,且曲线
处的切线斜率为3.
(1)求函数
的解析式;
(2)求
在
上的最大值和最小值.
(1)
(2)在[-4, 1]上的最大值为13,最小值为-11。
解析试题分析:(1)先求函数f(x)=x3+ax2+bx+5的导函数,再由x=
时,y=f(x)有极值,列一方程,曲线y=f(x)在点f(1)处的切线斜率为3,列一方程,联立两方程即可得a、b值
(2)先求函数f(x)=x3+ax2+bx+5的导函数,再解不等式得函数的单调区间,最后列表列出端点值f(-4),f(1)及极值,通过比较求出y=f(x)在[-4,1]上的最大值和最小值。
解:(1)
由题意,得
所以,
(2)由(1)知
,
![]()
-4 (-4,-2) -2 ![]()
![]()
![]()
1 ![]()
+ 0 - 0 + ![]()
![]()
![]()
极大值 ![]()
![]()
极小值 ![]()
![]()
函数值
练习册系列答案
青苹果同步练习册系列答案
小学生学习指导丛书系列答案
课堂小测本系列答案
优秀生数法题解系列答案
亮点激活精编全能大试卷系列答案
成长背囊高效测评单元测试卷系列答案
伴你成长同步辅导与能力训练系列答案
黄冈金牌之路单元月考卷系列答案
伴你成长阶段综合测试卷集系列答案
红领巾乐园沈阳出版社系列答案
相关题目