题目内容

已知在长方体中,点为棱上任意一点,.

(Ⅰ)求证:平面平面

(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值.

 

【答案】

(Ⅰ)详见解析;(Ⅱ)二面角的余弦值为

【解析】

试题分析:(Ⅰ)求证:平面平面,证明两个平面垂直,只需证明一个平面过另一个平面的垂线即可,由长方体的性质,易证平面,从而可证平面平面;(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值,求二面角问题,可用传统方法,找二面角的平面角,但本题不易找,另一种方法,用向量法,本题因为是长方体,容易建立空间坐标系,以轴,以轴,以轴建立空间直角坐标系,分别设出两个平面的法向量,利用向量的运算,求出向量,即可求出二面角的余弦值.

试题解析:(Ⅰ)为正方形                       2分

平面                          4分

平面   平面平面       6分

(Ⅱ)建立以轴,以轴,以轴的空间直角坐标系     7分

设平面的法向量为

                     9分

设平面的法向量为

                       11分

                              13分

二面角的余弦值为                      14分

考点:面面垂直,二面角.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网