题目内容
【题目】如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC. ![]()
(1)求证:平面ABE⊥平面BEF;
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角
,求a的取值范围.
【答案】
(1)证明:如图,
![]()
∵AB∥CD,CD⊥AD,AD=CD=2AB=2,F为CD的中点,
∴ABFD为矩形,AB⊥BF.
∵DE=EC,∴DC⊥EF,又AB∥CD,∴AB⊥EF
∵BF∩EF=F,∴AB⊥面BEF,又AE面ABE,
∴平面ABE⊥平面BEF
(2)解:∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD
又AB⊥PD,所以AB⊥面PAD,AB⊥PA.
以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间坐标系,
则B(1,0,0),D(0,2,0),P(0,0,a),C(2,2,0),E(1,1,
)
![]()
平面BCD的法向量
,
设平面EBD的法向量为
,
由
,即
,取y=1,得x=2,z= ![]()
则
.
所以
.
因为平面EBD与平面ABCD所成锐二面角
,
所以cosθ∈
,即
.
由
得: ![]()
由
得:
或
.
所以a的取值范围是 ![]()
【解析】(1)由题目给出的条件,可得四边形ABFD为矩形,说明AB⊥BF,再证明AB⊥EF,由线面垂直的判定可得AB⊥面BEF,再根据面面垂直的判定得到平面ABE⊥平面BEF;(2)以A点为坐标原点,AB、AD、AP所在直线分别为x、y、z轴建立空间坐标系,利用平面法向量所成交与二面角的关系求出二面角的余弦值,根据给出的二面角的范围得其余弦值的范围,最后求解不等式可得a的取值范围.
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.