题目内容
在一容器内装有浓度为r%的溶液a升,注入浓度为p%的溶液
a升,搅匀后再倒出溶液
a升,这叫做一次操作.
(1)设第n次操作后容器内溶液的浓度为bn(每次注入的溶液都是p%),计算b1,b2,b3,并归纳出bn的计算公式(不要求证明)
(2)设p>q>r,且p-r=2(p-q)要使容器内溶液浓度不小于q%,问至少要进行上述操作多少次?(已知lg2=0.3010)
| 1 |
| 4 |
| 1 |
| 4 |
(1)设第n次操作后容器内溶液的浓度为bn(每次注入的溶液都是p%),计算b1,b2,b3,并归纳出bn的计算公式(不要求证明)
(2)设p>q>r,且p-r=2(p-q)要使容器内溶液浓度不小于q%,问至少要进行上述操作多少次?(已知lg2=0.3010)
分析:(1)由b1=
=
(
r+
p),b2=
=
[(
)2r+
p+
p],b3=
=
[(
)3r+
p+
p+
p],能求出bn的计算公式.
(2)bn=
(
) n+
[1+
+(
)2+…+(
)n-1]=
(
)n+
•
=
-
(
)n(p-r),依题意有:
-
(
)n(p-r)≥
,由此能求出至少要注入倒出4次.
a×
| ||||||
a+
|
| 1 |
| 100 |
| 4 |
| 5 |
| 1 |
| 5 |
a•b1+
| ||||
a+
|
| 1 |
| 100 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 52 |
a•b2+
| ||||
a+
|
| 1 |
| 100 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 52 |
| 42 |
| 53 |
(2)bn=
| r |
| 100 |
| 4 |
| 5 |
| p |
| 500 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| r |
| 100 |
| 4 |
| 5 |
| p |
| 500 |
1-(
| ||
1-
|
| p |
| 100 |
| 1 |
| 100 |
| 4 |
| 5 |
| p |
| 100 |
| 1 |
| 100 |
| 4 |
| 5 |
| q |
| 100 |
解答:解:(1)b1=
=
(
r+
p),
b2=
=
[(
)2r+
p+
p],
b3=
=
[(
)3r+
p+
p+
p],
∴bn=
[(
)nr+
p+
p+…+
p].
(2)bn=
(
) n+
[1+
+(
)2+…+(
)n-1]
=
(
)n+
•
=
-
(
)n(p-r),
依题意有:
-
(
)n(p-r)≥
,
∵p-r=2(p-q),
∴上式化简得:(
)n≥2,
∴n≥
=
≈3.103,
∴至少要注入倒出4次.
a×
| ||||||
a+
|
| 1 |
| 100 |
| 4 |
| 5 |
| 1 |
| 5 |
b2=
a•b1+
| ||||
a+
|
| 1 |
| 100 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 52 |
b3=
a•b2+
| ||||
a+
|
| 1 |
| 100 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 52 |
| 42 |
| 53 |
∴bn=
| 1 |
| 100 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 52 |
| 4n-1 |
| 5n |
(2)bn=
| r |
| 100 |
| 4 |
| 5 |
| p |
| 500 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
=
| r |
| 100 |
| 4 |
| 5 |
| p |
| 500 |
1-(
| ||
1-
|
| p |
| 100 |
| 1 |
| 100 |
| 4 |
| 5 |
依题意有:
| p |
| 100 |
| 1 |
| 100 |
| 4 |
| 5 |
| q |
| 100 |
∵p-r=2(p-q),
∴上式化简得:(
| 5 |
| 4 |
∴n≥
| lg2 |
| 1-3lg2 |
| 0.3010 |
| 1-3×0.3010 |
∴至少要注入倒出4次.
点评:本题考查数列在生产实际中的具体应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目