题目内容
凸十边形的对角线的条数为________.
35
(本小题满分14分)已知椭圆,其中为左、右焦点,O为坐标原点.直线l与椭圆交于两个不同点.当直线l过椭圆C右焦点F2且倾斜角为时,原点O到直线l的距离为.又椭圆上的点到焦点F2的最近距离为.
(1)求椭圆C的方程;
(2)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积的最大值;
(3)若抛物线为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.
5名大人要带两个小孩排队上山,小孩不排在一起也不排在头、尾,则共有______种排法.
下面几个问题中属于组合问题的是____.(填序号)
①由1,2,3,4构成的双元素集合;②5个队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组合无重复数字的两位数的方法.
设x∈N*,则Cx-12x-3+C2x-3x+1的值为________.
某运动队有5对老搭档运动员,现抽派4个运动员参加比赛,则这4人都不是老搭档的抽派方法数为________.
某次足球赛共12支球队参加,分三个阶段进行:
(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净剩球数取前两名;
(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队客场各赛一场)决出胜者;
(3)决赛:两个胜队参加决赛一场,决出胜负.
问全部赛程共需比赛多少场?
(1+x)+(1+x)2+…+(1+x)n的展开式中各项系数和为________.
某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?