题目内容

已知函数f(x)=asinxcosx+bsin2x,x∈R,且f(
π
12
)=
3
-1,f(
π
6
)=1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(
α
2
)=
3
5
,α∈(-π,
π
3
),求sinα的值.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(Ⅰ)首先根据已知条件建立方程组,解得a和b的值,进一步求出函数的解析式,再对函数关系式进行恒等变换,把函数的关系式变形成正弦型函数,在利用整体思想求出函数的单调递增区间.
(Ⅱ)通过函数关系式中角的恒等变换求出函数的值.
解答: 解:(Ⅰ)函数f(x)=asinxcosx+bsin2x,由关系式建立方程组得:
f(
π
12
)=
3
-1
f(
π
6
)=1

解得
a=2
3
b=-2
…(2分)
f(x)=2
3
sinxcosx-2sin2x=
3
sin2x+cos2x-1=2sin(2x+
π
6
)-1
…(4分)
令:2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z

kπ-
π
3
≤x≤kπ+
π
6
,k∈Z

所以f(x)的单调递增区间为[kπ-
π
3
,kπ+
π
6
](k∈Z)
…(6分)
(Ⅱ)由f(
α
2
)=
3
5
sin(α+
π
6
)=
4
5
,…(8分)
α+
π
6
∈(-
6
π
2
)

cos(α+
π
6
)=
3
5
…(10分)
sinα=sin(α+
π
6
-
π
6
)=
3
2
sin(α+
π
6
)-
1
2
cos(α+
π
6
)=
4
3
-3
10
…(12分)
点评:本题考查的知识要点:利用方程组求得a和b的值,进一步求出函数的解析式,利用整体思想求出函数的单调递增区间.角的恒等变换,求三角函数的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网