题目内容


已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)已知,求数列{bn}的前n项和


.解:(I)设等比数列{an}的公比为q,由题知a1=

又∵ S1+a1,S2+a2,S3+a3成等差数列,

∴ 2(S2+a2)=S1+a1+S3+a3

变形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3

q=+q2,解得q=1或q=

又由{an}为递减数列,于是q=

∴ an=a1=( )n.  

(Ⅱ)由于bn=anlog2an=-n∙( )n

于是

两式相减得:

整理得.  


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网