题目内容
7.设f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{3π}{2}+θ)+cos(-θ)}$,求f($\frac{2π}{3}$)的值.分析 利用三角函数的诱导公式化简原式,然后将$\frac{2π}{3}$代入并用特殊三角函数值求出答案.
解答 解:f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{3π}{2}+θ)+cos(-θ)}$=$\frac{2co{s}^{3}θ+si{n}^{2}θ+cosθ-3}{2+2co{s}^{2}θ+cosθ}$
=$\frac{2co{s}^{3}θ+1-co{s}^{2}θ+cosθ-3}{2+2co{s}^{2}θ+cosθ}$=$\frac{2(cosθ-1)(co{s}^{2}θ+cosθ+1)-cosθ(cosθ-1)}{2+2co{s}^{2}θ+cosθ}$
=$\frac{(cosθ-1)(2co{s}^{2}θ+2cosθ-cosθ+2)}{1+2co{s}^{2}θ+cosθ}$=cosθ-1,
∵cos($\frac{2π}{3}$)=$-\frac{1}{2}$,
∴f($\frac{2π}{3}$)=$-\frac{1}{2}-1=-\frac{3}{2}$.
点评 本题考查了三角函数的诱导公式,考查了三角函数的值,是中档题.
练习册系列答案
相关题目
7.下列命题错误的是( )
| A. | 在回归分析模型中,残差平方和越大,说明模型的拟合效果越好 | |
| B. | 线性相关系数|r|越大,两个变量的线性相关性越强;反之,线性相关性越弱 | |
| C. | 由变量x和y的数据得到其回归直线方程l:$\widehat{y}$=$\widehat{b}$x+a,则l一定经过P($\overline{x}$,$\overline{y}$) | |
| D. | 在回归直线方程$\widehat{y}$=0.1x+1中,当解释变量x每增加一个单位时,预报变量$\widehat{y}$增加0.1个单位. |