题目内容

19.若a,b,c>0,且$a(a+b+c)+bc=4+2\sqrt{3}$,则2a+b+c的最小值为(  )
A.$\sqrt{3}-1$B.$2\sqrt{3}+2$C.$\sqrt{3}+1$D.$2\sqrt{3}-2$

分析 由题意知a(a+b+c)+bc=(a+c)(a+b)=4+2$\sqrt{3}$,所以2a+b+c=(a+b)+(a+c)≥2$\sqrt{(a+b)(a+c)}$=2$\sqrt{4+2\sqrt{3}}$=2$\sqrt{3}$+2,即可求出2a+b+c的最小值.

解答 解:a(a+b+c)+bc=a(a+b)+ac+bc
=a(a+b)+c(a+b)=(a+c)(a+b)=4+2$\sqrt{3}$.
2a+b+c=(a+b)+(a+c)
≥2$\sqrt{(a+b)(a+c)}$=2$\sqrt{4+2\sqrt{3}}$=2$\sqrt{3}$+2,
所以,2a+b+c的最小值为2$\sqrt{3}$+2.
故选:B.

点评 本题考查不等式的基本性质和应用:求最值,解题时注意变形,运用因式分解和整体思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网