题目内容
【题目】设a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,则b﹣a的最大值为( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】A
【解析】解:∵(3x2+a)(2x+b)≥0在(a,b)上恒成立,
∴3x2+a≥0,2x+b≥0或3x2+a≤0,2x+b≤0,
①若2x+b≥0在(a,b)上恒成立,则2a+b≥0,即b≥﹣2a>0,
此时当x=0时,3x2+a=a≥0不成立,
②若2x+b≤0在(a,b)上恒成立,则2b+b≤0,即b≤0,
若3x2+a≤0在(a,b)上恒成立,则3a2+a≤0,即﹣
≤a≤0,
故b﹣a的最大值为
,
故选:A
【考点精析】掌握二次函数的性质和基本不等式是解答本题的根本,需要知道当
时,抛物线开口向上,函数在
上递减,在
上递增;当
时,抛物线开口向下,函数在
上递增,在
上递减;基本不等式:![]()
,(当且仅当
时取到等号);变形公式:![]()
.
练习册系列答案
相关题目