题目内容

设x>y>z,n∈N,则
1
x-y
+
1
y-z
n
x-z
恒成立,则nmax=
4
4
分析:由x>y>z,知x-y>0,y-z>0,x-z>0,从而
1
x-y
+
1
y-z
n
x-z
恒成立,即
x-z
x-y
+
x-z
y-z
≥n
恒成立,等价于(
x-z
x-y
+
x-z
y-z
)min
≥n,利用基本不等式可求得最小值.
解答:解:∵x>y>z,
∴x-y>0,y-z>0,x-z>0,
1
x-y
+
1
y-z
n
x-z
恒成立,
x-z
x-y
+
x-z
y-z
≥n
恒成立,等价于(
x-z
x-y
+
x-z
y-z
)min
≥n,
x-z
x-y
+
x-z
y-z
=
x-y+y-z
x-y
+
x-y+y-z
y-z
=
y-z
x-y
+
x-y
y-z
+2≥2
y-z
x-y
x-y
y-z
+2=4,
当且仅当y-z=x-y,即2y=x+z时取得等号,
(
x-z
x-y
+
x-z
y-z
)min
=4,
∴n≤4,
即nmax=4,
故答案为:4.
点评:本题考查基本不等式的应用及恒成立问题,恒成立问题常转化为最值解决,使用基本不等式求最值注意条件:一正、二定、三相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网