题目内容
设x>y>z,n∈N,则
+
≥
恒成立,则nmax=
| 1 |
| x-y |
| 1 |
| y-z |
| n |
| x-z |
4
4
.分析:由x>y>z,知x-y>0,y-z>0,x-z>0,从而
+
≥
恒成立,即
+
≥n恒成立,等价于(
+
)min≥n,利用基本不等式可求得最小值.
| 1 |
| x-y |
| 1 |
| y-z |
| n |
| x-z |
| x-z |
| x-y |
| x-z |
| y-z |
| x-z |
| x-y |
| x-z |
| y-z |
解答:解:∵x>y>z,
∴x-y>0,y-z>0,x-z>0,
∴
+
≥
恒成立,
即
+
≥n恒成立,等价于(
+
)min≥n,
∵
+
=
+
=
+
+2≥2
+2=4,
当且仅当y-z=x-y,即2y=x+z时取得等号,
∴(
+
)min=4,
∴n≤4,
即nmax=4,
故答案为:4.
∴x-y>0,y-z>0,x-z>0,
∴
| 1 |
| x-y |
| 1 |
| y-z |
| n |
| x-z |
即
| x-z |
| x-y |
| x-z |
| y-z |
| x-z |
| x-y |
| x-z |
| y-z |
∵
| x-z |
| x-y |
| x-z |
| y-z |
| x-y+y-z |
| x-y |
| x-y+y-z |
| y-z |
| y-z |
| x-y |
| x-y |
| y-z |
|
当且仅当y-z=x-y,即2y=x+z时取得等号,
∴(
| x-z |
| x-y |
| x-z |
| y-z |
∴n≤4,
即nmax=4,
故答案为:4.
点评:本题考查基本不等式的应用及恒成立问题,恒成立问题常转化为最值解决,使用基本不等式求最值注意条件:一正、二定、三相等.
练习册系列答案
相关题目