题目内容
设是定义在(-∞,+∞)上的奇函数,且时, ,则时,=______________.
_________________;
设是定义在上的函数,若 ,且对任意,满足
,,则=( )
设是定义在R上的奇函数,且对任意,当时,都有.
(1)求证:在R上为增函数.
(2)若对任意恒成立,求实数k的取值范围.
设是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数 ”;若对定义域内的每一个,总有,则称为“阶不减函数”(为函数的导函数).
(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;
(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.
设是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是( )
A. B.
C. D.
设是定义在上的奇函数,且,当时,有恒成立,则不等式的解集是 ( )