题目内容

12.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{x},1≤x≤2}\\{{e}^{-x},0≤x≤1}\end{array}\right.$,则${∫}_{0}^{2}$f(x)dx=(  )
A.$\frac{1}{e}$+ln2B.-$\frac{1}{e}$+ln2C.1-$\frac{1}{e}$+ln2D.$\frac{1}{e}$+ln2-1

分析 只需根据定积分的定义先求出被积函数的原函数,然后求解即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{\frac{1}{x},1≤x≤2}\\{{e}^{-x},0≤x≤1}\end{array}\right.$,
∴${∫}_{0}^{2}$f(x)dx=${∫}_{0}^{1}$e-xdx+${∫}_{1}^{2}$$\frac{1}{x}$dx=(-e-x)${|}_{0}^{1}$+lnx${|}_{1}^{2}$=1-$\frac{1}{e}$+ln2,
故选:C.

点评 本题考查定积分的运算性质及微积分基本定理,熟记微积分基本定理是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网