题目内容
18.若复数z满足z(1-i)=|1-i|+i,则$\overline{z}$的虚部为$-\frac{\sqrt{2}+1}{2}$.分析 把已知等式变形,利用复数代数形式的乘除运算化简,求得$\overline{z}$得答案.
解答 解:由z(1-i)=|1-i|+i,得$z=\frac{|1-i|+i}{1-i}=\frac{\sqrt{2}+i}{1-i}$=$\frac{(\sqrt{2}+i)(1+i)}{(1-i)(1+i)}=\frac{(\sqrt{2}-1)+(\sqrt{2}+1)i}{2}$.
∴$\overline{z}=\frac{\sqrt{2}-1}{2}-\frac{\sqrt{2}+1}{2}i$,
则$\overline{z}$的虚部为$-\frac{\sqrt{2}+1}{2}$.
故答案为:$-\frac{\sqrt{2}+1}{2}$.
点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
13.某初级中学有学生270人,其中七年级108人,八、九年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,学生按照七、八、九年级依次统一编号为1、2、3、…、270;使用系统抽样时,将学生统一随机编号为1、2、3、…、270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7、34、61、88、115、142、169、196、223、250
②5、9、100、107、111、121、180、190、200、265
③11、38、65、92、119、146、173、200、227、254
④30、57、84、111、138、165、192、219、246、270
关于上述样本的下列结论中,正确的是( )
①7、34、61、88、115、142、169、196、223、250
②5、9、100、107、111、121、180、190、200、265
③11、38、65、92、119、146、173、200、227、254
④30、57、84、111、138、165、192、219、246、270
关于上述样本的下列结论中,正确的是( )
| A. | ②③都不能为系统抽样 | B. | ②④都不能为分层抽样 | ||
| C. | ①④都可能为系统抽样 | D. | ①③都可能为分层抽样 |