题目内容
19.圆心在直线2x-y=0上的圆C与x轴的正半轴相切,圆C截y轴所得的弦的长为2$\sqrt{3}$,则圆C的标准方程为(x-1)2+(y-2)2=4.分析 设圆心(t,2t),由题意可得半径r=2|t|,求出圆心到直线的距离d,再由4t2=t2+3,解得t的值,从而得到圆心坐标和半径,由此求出圆的方程.
解答 解:设圆心(t,2t)(t>0),则由圆与x轴相切,可得半径r=2|t|.
∵圆心到y轴的距离d=t,
由圆C截y轴所得的弦的长为2$\sqrt{3}$,4t2=t2+3
解得t=1.
故圆心为(1,2),半径等于2.
故圆C的方程为(x-1)2+(y-2)2=4.
故答案为(x-1)2+(y-2)2=4.
点评 本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于中档题.
练习册系列答案
相关题目
9.某校高三子啊一次模拟考试后,为了解数学成绩是否与班级有关,对甲乙两个班数学成绩(满分150分)进行分析,按照不小于120分为优秀,120分以下为非优秀的标准统计成绩,已知从全班100人中随机抽取1人数学成绩优秀的概率为$\frac{3}{10}$,调查结果如表所示.
(1)请完成上面的列联表;
(2)根据列联表的数据,问是否有95%的把握认为“数学成绩与班级有关系”;
(3)若按下面的方法从甲班数学成绩优秀的学生中抽取1人:把甲班数学成绩优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数和被记为抽取人的编号,求抽到的编号为6或10的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | ||
| 乙班 | 30 | ||
| 合计 | 100 |
(2)根据列联表的数据,问是否有95%的把握认为“数学成绩与班级有关系”;
(3)若按下面的方法从甲班数学成绩优秀的学生中抽取1人:把甲班数学成绩优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数和被记为抽取人的编号,求抽到的编号为6或10的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
10.
如图是一个四面体的三视图,三个正方形的边长均为2,则四面体外接球的体积为( )
| A. | $\frac{\sqrt{3}}{2}π$ | B. | 4$\sqrt{3}$π | C. | $\frac{4\sqrt{3}}{3}$π | D. | 8$\sqrt{3}$π |
14.在△ABC中,AB=AC=1,$\overrightarrow{AM}$=$\overrightarrow{MB}$,$\overrightarrow{BN}$=$\overrightarrow{NC}$,$\overrightarrow{CM}$•$\overrightarrow{AN}$=-$\frac{1}{4}$,则∠ABC=( )
| A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |