题目内容
【题目】某企业要设计制造一批大小、规格相同的长方体封闭水箱,已知每个水箱的表面积为432(每个水箱的进出口所占面积与制作材料的厚度均忽略不计).每个长方体水箱的底面长是宽的2倍.现设每个长方体水箱的底面宽是
,用
表示每个长方体水箱的容积.
(1)试求函数
的解析式及其定义域;
(2)当
为何值时,
有最大值,并求出最大值.
【答案】(1)
,定义域为
;(2)当
时,
有最大值,为576.
【解析】
(1)由题意得长方体的高
,根据长方体的体积公式可得
,然后根据实际情况得到定义域.(2)利用导数判断出函数
的单调性,进而可得最值.
(1)依题意,每个长方体水箱的底面宽是
,则长是
,设其高为
,
所以其表面积为
,
解得
,
所以
,
由
,解得
,
所以函数
的定义域为
.
(2)由(1)知
,
所以
,
所以当
时,
,当
时,
.
从而
在
上单调递增,在
上单调递减;
故当
时,
.
练习册系列答案
相关题目