题目内容
10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表):| 零件数x(个) | 10 | 20 | 30 | 40 | 50 |
| 加工时间y(分钟) | 62 | 68 | 75 | 81 | 89 |
分析 根据回归直线方程$\widehat{y}$=0.67x+a的图象过样本中心点($\overline{x}$,$\overline{y}$),求出平均数代入方程即可求出a的值.
解答 解:由题意,计算$\overline{x}$=$\frac{1}{5}$×(10+20+30+40+50)=30,
$\overline{y}$=$\frac{1}{5}$×(62+68+75+81+89)=75,
且回归直线方程 $\widehat{y}$=0.67x+a的图象过样本中心点($\overline{x}$,$\overline{y}$),
所以a=75-0.67×30=54.9.
故答案为:54.9.
点评 本题考查了回归直线方程的图象过样本中心点的应用问题,是基础题目.
练习册系列答案
相关题目
20.解α的终边过点P(4,-3),则cosα的值为( )
| A. | $\frac{4}{5}$ | B. | $-\frac{3}{5}$ | C. | 4 | D. | -3 |
1.图中曲线的方程可以是( )

| A. | (x+y-1)•(x2+y2-1)=0 | B. | $\sqrt{x+y-1}•({x^2}+{y^2}-1)=0$ | ||
| C. | $(x+y-1)•\sqrt{{x^2}+{y^2}-1}=0$ | D. | $\sqrt{x+y-1}•\sqrt{{x^2}+{y^2}-1}=0$ |
5.设函数y=f(x),x∈R“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的( )
| A. | 充分不必要条件 | B. | 充要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
15.已知x,y满足线性约束条件$\left\{\begin{array}{l}y-x≤3\\ x+y≤5\\ y≥λ\end{array}\right.$,若z=x+4y的最大值与最小值之差为5,则实数λ的值为( )
| A. | 3 | B. | $\frac{7}{3}$ | C. | $\frac{3}{2}$ | D. | 1 |
2.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
| 与教育有关 | 与教育无关 | 合计 | |
| 男 | 30 | 10 | 40 |
| 女 | 35 | 5 | 40 |
| 合计 | 65 | 15 | 80 |
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
20.设p:x<2,q:-2<x<2,则p是q成立的( )
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |