题目内容

6.已知函数f(x)=x2e2x+m|x|ex+1(m∈R)有四个零点,则m的取值范围为(  )
A.(-∞,-e-$\frac{1}{e}$)B.(-∞,e+$\frac{1}{e}$)C.(-e-$\frac{1}{e}$,-2)D.(-∞,-$\frac{1}{e}$)

分析 令y=xex,则y'=(1+x)ex,求出极值点,判断函数的单调性,作出y=xex图象,利用图象变换得f(x)=|xex|图象,令f(x)=t,则关于t方程h(t)=t2+mt+1=0两根分别在$(0,\frac{1}{e}),(\frac{1}{e},+∞)$,满足g(x)=-1的x有4个,列出不等式求解即可.

解答 解:令y=xex,则y'=(1+x)ex,由y'=0,得x=-1,
当x∈(-∞,-1)时,y'<0,函数y单调递减,
当x∈(-1,+∞)时,y'>0,函
数y单调递增.作出y=xex图象,
利用图象变换得f(x)=|xex|图象(如图10),
令f(x)=t,则关于t方程h(t)=t2+mt+1=0两根分别在$(0,\frac{1}{e}),(\frac{1}{e},+∞)$时(如图11),
满足g(x)=-1的x有4个,由$h(\frac{1}{e})=\frac{1}{{e}^{2}}+\frac{1}{e}m+1<0$,
解得m<-e-$\frac{1}{e}$.  
故选:A.

点评 本题考查函数的导数的应用,函数的单调性以及函数的极值,函数的图象的变换,函数零点个数,考查函数与方程的综合应用,数形结合思想以及转化思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网