题目内容
1.已知a=3${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=log${\;}_{\frac{1}{2}}$3,则( )| A. | a>b>c | B. | b>c>a | C. | c>b>a | D. | b>a>c |
分析 利用指数函数与对数函数的单调性即可得出.
解答 解:∵a=3${\;}^{\frac{1}{3}}$>1,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$=log32∈(0,1),c=log${\;}_{\frac{1}{2}}$3<0,
则a>b>c.
故选:A.
点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
12.sin22α+cos22α=( )
| A. | 1 | B. | cos2α | C. | 2 | D. | sin2α |
9.要得到函数y=sinx的图象,只需将函数y=sin(2x+$\frac{π}{4}$)的图象上所有点的( )
| A. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度 | |
| B. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度 | |
| C. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度 | |
| D. | 横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度 |
16.在△ABC中,A,B,C所对的边长分别为a,b,c,且$\frac{sinA}{cosB}=2sinC$,则△ABC的形状为( )
| A. | 等边三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
6.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…,8),其回归直线方程是$\hat y=\frac{1}{2}x+a$且x1+x2+…+x8=2,y1+y2+…+y8=5,则实数a是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{16}$ |
9.
在Rt△ABC中,∠C=$\frac{π}{2}$,AC=1,BC=$\sqrt{3}$,D是AB边上的动点,设BD=x,把△BDC沿DC翻折为△B′DC,若存在某个位置,使得异面直线B′C与AD所成的角为$\frac{π}{3}$,则实数x的取值范围是( )
| A. | 0<x<$\frac{3-\sqrt{3}}{2}$ | B. | $\frac{3-\sqrt{3}}{2}$<x<2 | C. | 0<x<$\frac{2-\sqrt{3}}{2}$ | D. | $\frac{2-\sqrt{2}}{2}$<x<2 |
10.复数z=$\frac{1-\sqrt{3}i}{\sqrt{3}+i}$,复数$\overline{z}$是z的共轭复数,则z$•\overline{z}$=( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 4 |