题目内容

△ABC的外接圆圆心为O,且3
OA
+4
OB
+5
OC
=
0
,则∠C等于
45°
45°
分析:由题设知|
OA
| =|
OB
| =|
OC
|
OC
=-
1
5
(3 
OA
+4
OB
)
,所以
OC
OC
=|
OC
|
2
=
1
25
(3
OA
+4
OB
)2
=
9
25
|
OA
|
2
+
24
25
OA
OB
+
16
25
|
OB
|
2
=|
OC
|
2
+
24
25
OA
OB
,故
24
25
OA
OB
=0,∠AOB=90°.由此能求出∠C=45°.
解答:解:∵△ABC的外接圆圆心为O,且3
OA
+4
OB
+5
OC
=
0

|
OA
| =|
OB
| =|
OC
|

OC
=-
1
5
(3 
OA
+4
OB
)

OC
OC
=|
OC
|
2

=
1
25
(3
OA
+4
OB
)2

=
9
25
|
OA
|
2
+
24
25
OA
OB
+
16
25
|
OB
|
2

=|
OC
|
2
+
24
25
OA
OB

24
25
OA
OB
=0,∴∠AOB=90°.外接圆中,OA=OB,
∴O为AC中点,
∵∠B为90°,
∴∠C=45°.
故答案为:45°.
点评:本题考查向量的运算和三角形外心的性质和应用,解题时要认真审题.仔细解答,注意向量运算法则的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网