题目内容
△ABC的外接圆圆心为O,且3
+4
+5
=
,则∠C等于
| OA |
| OB |
| OC |
| 0 |
45°
45°
.分析:由题设知|
| =|
| =|
|,
=-
(3
+4
),所以
•
=|
|2=
(3
+4
)2=
|
|2+
•
+
|
|2=|
|2+
•
,故
•
=0,∠AOB=90°.由此能求出∠C=45°.
| OA |
| OB |
| OC |
| OC |
| 1 |
| 5 |
| OA |
| OB |
| OC |
| OC |
| OC |
| 1 |
| 25 |
| OA |
| OB |
| 9 |
| 25 |
| OA |
| 24 |
| 25 |
| OA |
| OB |
| 16 |
| 25 |
| OB |
| OC |
| 24 |
| 25 |
| OA |
| OB |
| 24 |
| 25 |
| OA |
| OB |
解答:解:∵△ABC的外接圆圆心为O,且3
+4
+5
=
,
∴|
| =|
| =|
|,
=-
(3
+4
),
∴
•
=|
|2
=
(3
+4
)2
=
|
|2+
•
+
|
|2
=|
|2+
•
,
∴
•
=0,∴∠AOB=90°.外接圆中,OA=OB,
∴O为AC中点,
∵∠B为90°,
∴∠C=45°.
故答案为:45°.
| OA |
| OB |
| OC |
| 0 |
∴|
| OA |
| OB |
| OC |
| OC |
| 1 |
| 5 |
| OA |
| OB |
∴
| OC |
| OC |
| OC |
=
| 1 |
| 25 |
| OA |
| OB |
=
| 9 |
| 25 |
| OA |
| 24 |
| 25 |
| OA |
| OB |
| 16 |
| 25 |
| OB |
=|
| OC |
| 24 |
| 25 |
| OA |
| OB |
∴
| 24 |
| 25 |
| OA |
| OB |
∴O为AC中点,
∵∠B为90°,
∴∠C=45°.
故答案为:45°.
点评:本题考查向量的运算和三角形外心的性质和应用,解题时要认真审题.仔细解答,注意向量运算法则的灵活运用.
练习册系列答案
相关题目
已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且
+
=λ
(λ∈R),则满足条件的函数f(x)有( )
| DA |
| DC |
| DB |
| A、6个 | B、10个 |
| C、12个 | D、16个 |
三角形ABC的外接圆圆心为O且半径为1,若3O
+4O
+5O
=
则O
•A
=( )
| A |
| B |
| C |
| 0 |
| C |
| B |
A、
| ||
B、-
| ||
C、
| ||
D、-
|