题目内容

已知1≤x2+y2≤2,则x2+xy+y2的取值范围   
【答案】分析:令x=asinθ,y=acosθ,t=x2+xy+y2,则有1≤x2+y2≤2,可得a的范围,进而化简t=x2+xy+y2可得t=(1+sin2θ)a2
由三角函数的性质,可得1+sin2θ的范围,计算可得答案.
解答:解:令x=asinθ,y=acosθ,t=x2+xy+y2
则有1≤x2+y2≤2,可得1≤a≤
进而可得,t=x2+xy+y2=a2+a2sinθcosθ=(1+sin2θ)a2
由三角函数的性质,可得≤(1+sin2θ)≤
≤t≤3,
故答案为[,3].
点评:本题考查换元法在不等式中的应用,常见的换元方法有三角换元,要结合三角函数进行分析.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网