题目内容
已知tan(x-y)=2,tan(y+
)=3,则tan(x+
)=( )
| π |
| 5 |
| π |
| 5 |
| A、-2 | B、2 | C、-1 | D、1 |
分析:把所求式子的角x+
变为(x-y)+(y+
)后,利用两角和的正切函数公式化简,然后把已知的tan(x-y)=2,tan(y+
)=3代入即可求出值.
| π |
| 5 |
| π |
| 5 |
| π |
| 5 |
解答:解:由tan(x-y)=2,tan(y+
)=3,
则tan(x+
)=tan[(x-y)+(y+
)]=
=
=-1
故选C
| π |
| 5 |
则tan(x+
| π |
| 5 |
| π |
| 5 |
tan(x-y)+tan(y+
| ||
1-tan(x-y)tan(y+
|
| 2+3 |
| 1-2+3 |
故选C
点评:此题考查学生灵活运用两角和的正切函数公式化简求值,是一道综合题.本题的突破点是将角x+
变为(x-y)+(y+
)的形式.
| π |
| 5 |
| π |
| 5 |
练习册系列答案
相关题目