题目内容
13.动点P在直线x+y-4=0上,动点Q在直线x+y=8上,则|PQ|的最小值为( )| A. | $\sqrt{10}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{6}$ | D. | 2 |
分析 |PQ|的最小值为两条平行线间的距离,利用两条平行线间的距离公式,即可得出结论.
解答 解:|PQ|的最小值为两条平行线间的距离,即d=$\frac{|-4+8|}{\sqrt{2}}$=2$\sqrt{2}$,
故选B.
点评 本题考查两条平行线间的距离,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
3.将向量$\overrightarrow{a_1}=({{x_1},{y_1}}),\overrightarrow{a_2}=({{x_2},{y_2}}),…\overrightarrow{a_n}=({{x_n},{y_n}})$组成的系列称为向量列$\left\{{\overrightarrow{a_n}}\right\}$,并定义向量列$\left\{{\overrightarrow{a_n}}\right\}$的前n项和$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+…+\overrightarrow{a_n}$.如果一个向量列从第二项起,每一项与前一项的差都是同一个向量,那么称这样的向量列为等差向量列,若向量列$\left\{{\overrightarrow{a_n}}\right\}$是等差向量列,那么下述向量中,与一定平行$\overrightarrow{{S}_{21}}$的向量是( )
| A. | $\overrightarrow{{a_{10}}}$ | B. | $\overrightarrow{{a_{11}}}$ | C. | $\overrightarrow{{a_{20}}}$ | D. | $\overrightarrow{{a_{21}}}$ |
4.函数f(x)=x3+lnx-2零点所在的大致区间是( )
| A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,左焦点为F,过F作垂直于x轴的直线与双曲线相交于B、C两点,若△ABC为锐角三角形,则双曲线的离心率的取值范围为( )
| A. | (1,2) | B. | (1,$\sqrt{2}$) | C. | ($\sqrt{2}$,2) | D. | (2,+∞) |
18.已知幂函数f(x)=xα(α为常数)的图象过点$P({2,\frac{1}{2}})$,则f(x)的单调递减区间是( )
| A. | (-∞,0) | B. | (-∞,+∞) | C. | (-∞,0)∪(0,+∞) | D. | (-∞,0)与(0,+∞) |
5.某研究机构对中学生记忆能力x和识图能力y进行统计分析,得到如下数据:
由于某些原因,识图能力的一个数据丢失,但已知识图能力样本平均值是5.5.
(Ⅰ)求丢失的数据;
(Ⅱ)经过分析,知道记忆能力x和识图能力y之间具有线性相关关系,请用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(III)若某一学生记忆能力值为12,请你预测他的识图能力值.
| 记忆能力x | 4 | 6 | 8 | 10 |
| 识图能力y | 3 | ﹡﹡﹡ | 6 | 8 |
(Ⅰ)求丢失的数据;
(Ⅱ)经过分析,知道记忆能力x和识图能力y之间具有线性相关关系,请用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(III)若某一学生记忆能力值为12,请你预测他的识图能力值.
3.在等比数列{an}中,a1=3,a1+a2+a3=9,则a4+a5+a6等于( )
| A. | 9 | B. | 72 | C. | 9或72 | D. | 9或-72 |