ÌâÄ¿ÄÚÈÝ

20£®ÒÑÖªÒ»Ìõ·â±ÕµÄÇúÏßCÓÉÒ»¶ÎÔ²»¡C1£º$\left\{\begin{array}{l}{x=2cost}\\{y=2sint}\end{array}\right.$t¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]ºÍÒ»¶ÎÅ×ÎïÏß»¡C2£ºy2=2£¨x+$\frac{1}{2}$£©£¨x£¼1£©×é³É£®
£¨1£©ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»£¨XÖáµÄÕý°ëÖáΪ¼«ÖᣬԭµãΪ¼«µã£©
£¨2£©Èô¹ýÔ­µãµÄÖ±Ïß1ÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬lµÄÇãб½Ç¦Á¡Ê[0£¬$\frac{¦Ð}{3}$]£¬Çó|AB|µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Ê×ÏÈ£¬½«Ëù¸ø²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬È»ºó£¬»¯Îª¼«×ø±ê·½³Ì£¬¶ÔÅ×ÎïÏß·½³ÌÖ±½Ó»¯Îª¼«×ø±ê·½³Ì¼´¿É£»
£¨2£©¶Ô¦ÈµÄȡֵÇé¿ö½øÐÐÌÖÂÛ£¬´Ó¶øÈ·¶¨|AB|µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÇúÏßC1£º$\left\{\begin{array}{l}{x=2cost}\\{y=2sint}\end{array}\right.$£¬µÃ
x2+y2=4£¬
¡ßt¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]£¬
¡àx¡Ê[-1£¬1]£¬y¡Ê[-$\sqrt{3}$£¬$\sqrt{3}$]£¬
´Ëʱ¶ÔÓ¦µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬¦È¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]£¬
¡ßÅ×ÎïÏß»¡C2£ºy2=2£¨x+$\frac{1}{2}$£©£¨x£¼1£©×é³É£®
´Ëʱ¶ÔÓ¦µÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{1}{1-cos¦È}$£¬¦È¡Ê£¨$\frac{¦Ð}{3}$£¬$\frac{5¦Ð}{3}$£©£¬
¡à¦Ñ=$\left\{\begin{array}{l}{2£¬¦È¡Ê[-\frac{¦Ð}{3}£¬\frac{¦Ð}{3}]}\\{\frac{1}{1-cos¦È}£¬¦È¡Ê£¨\frac{¦Ð}{3}£¬\frac{5¦Ð}{3}£©}\end{array}\right.$£»
£¨2£©½áºÏ£¨1£©Öª£¬|AB|=¦Ñ¦È+¦Ñ¦Â+¦Ð£¬¸ù¾ÝͼÐΣ¬µÃ
µ±¦È¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]ʱ£¬¦È+¦Ð¡Ê[$\frac{2¦Ð}{3}$£¬$\frac{4¦Ð}{3}$]£¬´Ëʱ£¬
|AB|=¦Ñ¦È+¦Ñ¦Â+¦Ð
=2+$\frac{1}{1-cos£¨¦È+¦Ð£©}$
=2+$\frac{1}{1+cos¦È}$£¬
¡à|AB|¡Ê[$\frac{5}{2}$£¬$\frac{8}{3}$]£¬
µ±¦È¡Ê£¨$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$£©Ê±£¬¦È+¦Ð¡Ê£¨$\frac{4¦Ð}{3}$£¬$\frac{5¦Ð}{3}$£©£¬´Ëʱ£¬
|AB|=¦Ñ¦È+¦Ñ¦Â+¦Ð
=$\frac{1}{1-cos¦È}$+$\frac{1}{1-cos£¨¦È+¦Ð£©}$
=$\frac{1}{1-cos¦È}$+$\frac{1}{1+cos¦È}$£¬
=$\frac{2}{1-co{s}^{2}¦È}$£¬
¡ß¦È¡Ê[$\frac{2¦Ð}{3}$£¬$\frac{5¦Ð}{3}$£©Ê±£¬ÓÉͼÐζԳÆÐÔ£¬Öª
·¶Î§ÓëÉÏÊöÒ»Ö£¬×ÛÉÏ£¬µÃ
|AB|¡Ê[2£¬$\frac{8}{3}$]£®

µãÆÀ ±¾ÌâÖØµã¿¼²éÁ˲ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¡¢¼«×ø±ê·½³ÌµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø