题目内容
有下列命题:
①函数
与
的图象关于
轴对称;
②若函数
,则函数
的最小值为-2;
③若函数
在
上单调递增,则
;
④若
是
上的减函数,则
的取值范围是
.
其中正确命题的序号是 .
②.
解析试题分析:①与
的图像关于
轴对称的是
,而不是
的图像,故错误;
②因为![]()
,其函数
的图像由
的图像向右平2010个单位,所以
的最小值为-2,故正确;
③因为函数
为偶函数,且在
上单调递增,则
,
,故错误;
④若
是
上的减函数,则
,解之得
,即
的取值范围是
,故错误.
考点:函数的性质.
练习册系列答案
相关题目
设函数
,则
的值为( )
| A. | B. | C. | D. |
函数
的图像(( )
| A.关于原点对称 | B.关于主线 |
| C.关于 | D.关于直线 |
已知函数
,则“
”是“函数
在R上递增”的
| A.充分而不必要条件 | B.必要而不充分条件 |
| C.充要条件 | D.既不充分也不必要条件 |