搜索
题目内容
已知向量
a
=(sinx,2),
b
=(2cosx,1)
,若
a
∥
b
,则tanx=
4
4
.
试题答案
相关练习册答案
分析:
利用向量共线定理和三角函数的商数关系即可得出.
解答:
解:∵
a
∥
b
,∴sinx-4cosx=0,解得tanx=4.
故答案为4.
点评:
熟练掌握向量共线定理和三角函数的商数关系是解题的关键.
练习册系列答案
决胜新中考学霸宝典系列答案
天利38套常考基础题系列答案
智乐文化中考全真模拟试卷尖子生热身用系列答案
超能学典中考高分突破系列答案
逗号图书中考压轴题专练系列答案
中教联中考金卷中考试题精编系列答案
创新教育中考真题解析卷系列答案
中考全真模拟测试卷系列答案
通城学典全国中考试题分类精粹系列答案
金星教育中考夺冠抢分练系列答案
相关题目
已知向量
a
=(sinθ,
3
)
,
b
=(1,cosθ)
,
θ∈(-
π
2
,
π
2
)
.
(1)若
a
⊥
b
,求θ;
(2)求
|
a
+
b
|
的最大值.
已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
且
f(x)=
a
•
b
+2
(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x
1
,x
2
且
m∈(1,
2
)
,求x
1
+x
2
的值.
已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
⊥
b
,则sin2θ+cos
2
θ的值为( )
A.1
B.2
C.
1
2
D.3
已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
,
π
2
)
.
(1)若
a
⊥
b
,求θ的值;
(2)若已知
sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.
已知向量
a
=(sin(x-
π
4
),-1)
,
b
=(2,2)
且
f(x)=
a
•
b
+2
①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数
y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案