题目内容
15.解二元二次方程组$\left\{\begin{array}{l}{{x}^{2}+2xy+3{y}^{2}-48x+4y-4=0}\\{2{x}^{2}+4xy+6{y}^{2}-99x+7y-6=0}\end{array}\right.$.分析 $\left\{\begin{array}{l}{{x}^{2}+2xy+3{y}^{2}-48x+4y-4=0}&{①}\\{2{x}^{2}+4xy+6{y}^{2}-99x+7y-6=0}&{②}\end{array}\right.$,②-①×2可得:y=2-3x,代入①化为:11x2-46x+8=0,解得x,进而解得y.
解答 解:$\left\{\begin{array}{l}{{x}^{2}+2xy+3{y}^{2}-48x+4y-4=0}&{①}\\{2{x}^{2}+4xy+6{y}^{2}-99x+7y-6=0}&{②}\end{array}\right.$,
②-①×2可得:y=2-3x,代入①化为:11x2-46x+8=0,解得x=$\frac{2}{11}$,x=4.
∴$\left\{\begin{array}{l}{x=\frac{2}{11}}\\{y=\frac{16}{11}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=4}\\{y=-10}\end{array}\right.$.
∴原方程组的解为:$\left\{\begin{array}{l}{x=\frac{2}{11}}\\{y=\frac{16}{11}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=4}\\{y=-10}\end{array}\right.$.
点评 本题考查了方程组的解法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.函数y=$\sqrt{(lnx)^{2}-ln{x}^{2}-3}$的定义域为( )
| A. | (-∞,$\frac{1}{e}$)∪[e3,+∞) | B. | (-∞,$\frac{1}{e}$]∪[e3,+∞) | C. | [0,$\frac{1}{e}$)∪[e3,+∞) | D. | (0,$\frac{1}{e}$]∪[e3,+∞) |