题目内容
(2012•洛阳一模)已知向量
=(cos2x,
),
=(2,sin2x),函数f(x)=
•
.
(1)求f(x)的单调递增区间;
(2)△ABC中,a,b,c分别是角A,B,C的对边,f(C)=3,c=1,S△ABC=
,且a>b,求a,b.
| m |
| 3 |
| n |
| m |
| n |
(1)求f(x)的单调递增区间;
(2)△ABC中,a,b,c分别是角A,B,C的对边,f(C)=3,c=1,S△ABC=
| ||
| 2 |
分析:(1)利用向量数量积公式,结合二倍角、辅助角公式,化简函数,结合三角函数的单调性,即可得到结论;
(2)先确定C,在利用余弦定理、三角形的面积公式,即可得到结论.
(2)先确定C,在利用余弦定理、三角形的面积公式,即可得到结论.
解答:解:(1)∵向量
=(cos2x,
),
=(2,sin2x),函数f(x)=
•
,
∴f(x)=2cos2x+
sin2x=cos2x+1+
sin2x=2sin(2x+
)+1
令2kπ-
≤2x+
≤2kπ+
,k∈Z,则kπ-
≤x≤kπ+
∴f(x)的单调递增区间为[kπ-
,kπ+
],k∈Z;
(2)f(C)=2sin(2C+
)+1=3,∴sin(2C+
)=1
∵C是△ABC的内角,
∴2C+
=
,即C=
∴cosC=
=
∵S△ABC=
,∴
absin
=
,∴ab=2
∵c=1,∴a2+
=7
∴a2=3或a2=4
∵a>b,
∴a=2,b=
.
| m |
| 3 |
| n |
| m |
| n |
∴f(x)=2cos2x+
| 3 |
| 3 |
| π |
| 6 |
令2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
∴f(x)的单调递增区间为[kπ-
| π |
| 3 |
| π |
| 6 |
(2)f(C)=2sin(2C+
| π |
| 6 |
| π |
| 6 |
∵C是△ABC的内角,
∴2C+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
∴cosC=
| a2+b2-c2 |
| 2ab |
| ||
| 2 |
∵S△ABC=
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
| 3 |
∵c=1,∴a2+
| 12 |
| a2 |
∴a2=3或a2=4
∵a>b,
∴a=2,b=
| 3 |
点评:本题考查向量数量积公式、二倍角、辅助角公式,考查余弦定理、三角形面积公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目