题目内容
【题目】已知椭圆
的离心率
,连接椭圆的四个顶点得到的菱形的面积为4。
- 求椭圆的方程;
- 设直线
与椭圆相交于不同的两点
,已知点
的坐标为(
),点
在线段
的垂直平分线上,且
,求
的值
【答案】
,![]()
【解析】(1)解:由
,得
,再由
,得![]()
由题意可知, ![]()
解方程组
得 a=2,b=1
所以椭圆的方程为![]()
(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),
于是A,B两点的坐标满足方程组![]()
由方程组消去Y并整理,得![]()
由
得
![]()
设线段AB是中点为M,则M的坐标为![]()
以下分两种情况:
(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是
![]()
(2)当K
时,线段AB的垂直平分线方程为![]()
令x=0,解得![]()
由![]()
![]()
![]()
整理得![]()
综上![]()
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的
列联表.请将列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为
,求
的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:
,其中
.
| 0.05 | 0.01 |
| 3.841 | 6.635 |