题目内容
某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中成绩不超过8环的概率为( )
A. B. C. D.
双曲线的渐近线方程为_______;
已知抛物线,过其焦点且斜率为1的直线交抛物线于、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为 .
(13分)如图,椭圆经过点,离心率,直线l的方程为.
(1)求椭圆C的方程;
(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记、、的斜率分别为、、.问:是否存在常数,使得? 若存在,求的值; 若不存在,请说明理由.
某市为了创建国家级文明城市,采用系统抽样的方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2, ,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为 .
设斜率为2的直线过抛物线的焦点,且和 轴交于点,若 (为坐标原点)的面积为4,则抛物线方程为( )
(本小题满分12分)已知两直线l1:x+my+6=0 l2:(m-2)x+3my+2m=0
当m为何值时,l1与l2:
(1)平行;
(2)垂直;
已知集合,N=,若,则的值是( )
函数在定义域上的导函数是,若,且当时,,设、、,则 ( )