题目内容
在由正数组成的等比数列{an}中,若a3a4a5=3π,则sin(log3a1+log3a2+…+log3a7)的值为( )
分析:利用对数的基本运算化简log3a1+log3a2+…+log3a7,通过a3a4a5=3π,求出对数的值,然后求解即可.
解答:解:因为由正数组成的等比数列{an}中,a3a4a5=3π,所以a43=3π,a4=3
,
∴log3a1+log3a2+…+log3a7
=
=
=7
=7
=
.
∴sin(log3a1+log3a2+…+log3a7)
=sin
=sin(2π+
)
=sin
=
.
故选B.
| π |
| 3 |
∴log3a1+log3a2+…+log3a7
=
| log | (a1•a2•a3 •a4• a5•a6•a7) 3 |
=
| log |
3 |
=7
| log |
3 |
=7
| log | 3
3 |
=
| 7π |
| 3 |
∴sin(log3a1+log3a2+…+log3a7)
=sin
| 7π |
| 3 |
=sin(2π+
| π |
| 3 |
=sin
| π |
| 3 |
=
| ||
| 2 |
故选B.
点评:本题是基础题,考查等比数列等比中项的应用,对数的基本运算,正弦的三角函数值的求法,考查计算能力.
练习册系列答案
相关题目