题目内容
9.已知sinθ=-$\frac{1}{3}$,且-π<θ<-$\frac{π}{2}$,则θ可表示为( )| A. | $arcsin\frac{1}{3}$ | B. | $-\frac{π}{2}-arcsin(-\frac{1}{3})$ | C. | $-π+arcsin(-\frac{1}{3})$ | D. | $-π-arcsin(-\frac{1}{3})$ |
分析 由已知利用诱导公式变形,可得π+θ=arcsin$\frac{1}{3}$,进一步求得θ.
解答 解:∵sinθ=-$\frac{1}{3}$,且-π<θ<-$\frac{π}{2}$,
∴-sin(π+θ)=-$\frac{1}{3}$,即sin(π+θ)=$\frac{1}{3}$,0<π+θ<$\frac{π}{2}$,
则π+θ=arcsin$\frac{1}{3}$,∴$θ=-π+arc\frac{1}{3}$=$-π-arcsin(-\frac{1}{3})$.
故选:D.
点评 本题考查反三角函数,关键是明确反正弦函数的值域,是基础题.
练习册系列答案
相关题目
4.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为( )
| A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |