题目内容
设f(x)为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点为P(3,4)且过点A(2,2)的抛物线的一部分.
![]()
(1)求函数f(x)在(-∞,-2)上的解析式;
(2)在图中的直角坐标系中画出函数f(x)的图象;
(3)写出函数f(x)的值域和单调区间.
(1)当x>2时,设f(x)=a(x-3)2+4.
∵f(x)的图象过点A(2,2),
∴f(2)=a(2-3)2+4=2,∴a=-2,
∴f(x)=-2(x-3)2+4.
设x∈(-∞,-2),则-x>2,
∴f(-x)=-2(-x-3)2+4.
又因为f(x)在R上为偶函数,∴f(-x)=f(x),
∴f(x)=-2(-x-3)2+4,
即f(x)=-2(x+3)2+4,x∈(-∞,-2).
(2)图象如图所示.
![]()
(3)由图象观察知f(x)的值域为{y|y≤4}.
单调增区间为(-∞,-3]和[0,3].
单调减区间为[-3,0]和[3,+∞).
练习册系列答案
相关题目