题目内容
若
=n,则m=______,n=______.
| lim |
| x→-1 |
| x2+3x+m |
| x+1 |
若
=n,
则必有:x2+3x+m=(x+1)(x+m),∴x2+3x+m=x2+(m+1)x+m
故 m=2.
∴
=
(x+2)=1?∴n=1.
故答案为:2,1.
| lim |
| x→-1 |
| x2+3x+m |
| x+1 |
则必有:x2+3x+m=(x+1)(x+m),∴x2+3x+m=x2+(m+1)x+m
故 m=2.
∴
| lim |
| x→-1 |
| x2+3x+m |
| x+1 |
| lim |
| x→-1 |
故答案为:2,1.
练习册系列答案
相关题目
若
=a,则
(
+
+
+…+
)的值为( )
| lim |
| x→1 |
| x2-6x+5 |
| x2-1 |
| lim |
| n→∞ |
| 1 |
| a |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| A、-2 | ||
B、-
| ||
C、-
| ||
| D、3 |