题目内容

lim
x→1
x2-6x+5
x2-1
=a
,则
lim
n→∞
(
1
a
+
1
a2
+
1
a3
+…+
1
an
)
的值为(  )
A、-2
B、-
1
3
C、-
1
2
D、3
分析:先由题设条件求出a的值,再求出
lim
n→∞
(
1
a
+
1
a2
+
1
a3
+…+
1
an
)
的极限值.
解答:解:∵a=
lim
x→1
x2-6x+5
x2-1
=
lim
x→1
(x-1)(x-5)
(x-1)(x+1)
=
lim
x→1
x-5
x+1
=-2

lim
n→∞
(
1
a
+
1
a2
+
1
a3
+…+
1
an
)
=
lim
n→∞
[(-
1
2
)+(-
1
2
)
2
+(-
1
2
)
3
+…+(-
1
2
)
n
]

=
lim
n→∞
(-
1
2
)× [1-(-
1
2
)
n
]
1+
1
2
=-
1
3

故选B.
点评:本题考查极限的求法,解题时要认真审题,仔细求解,注意公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网