题目内容

lim
x→1
x2-6x+5
x2-1
=a
,则a=
 
lim
n→∞
(
1
a
+
1
a2
+
1
a3
+…+
1
an
)
=
 
分析:由题意知
lim
x→1
x2-6x+5
x2-1
=
lim
x→1
(x-1)(x-5)
(x+1)(x-1)
=
lim
x→1
x-5
x+1
=-2,由此可知a=-2.所以
lim
n→∞
(
1
a
+
1
a2
+
1
a3
+…+
1
an
)
=
lim
n→∞
1
-2
[1-(-
1
2
)
n
]
1- (-
1
2
,进而可得答案.
解答:解:∵
lim
x→1
x2-6x+5
x2-1
=
lim
x→1
(x-1)(x-5)
(x+1)(x-1)
=
lim
x→1
x-5
x+1
=-2,
∴由
lim
x→1
x2-6x+5
x2-1
=a
,知a=-2.
lim
n→∞
(
1
a
+
1
a2
+
1
a3
+…+
1
an
)
=
lim
n→∞
1
-2
[1-(-
1
2
)
n
]
1- (-
1
2
=-
1
3

答案:-2,-
1
3
点评:本题考查数列的极限,解题的关键是合理转化,消除零因子.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网