题目内容
若| lim |
| x→1 |
| x2-6x+5 |
| x2-1 |
| lim |
| n→∞ |
| 1 |
| a |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
分析:由题意知
=
=
=-2,由此可知a=-2.所以
(
+
+
+…+
)=
,进而可得答案.
| lim |
| x→1 |
| x2-6x+5 |
| x2-1 |
| lim |
| x→1 |
| (x-1)(x-5) |
| (x+1)(x-1) |
| lim |
| x→1 |
| x-5 |
| x+1 |
| lim |
| n→∞ |
| 1 |
| a |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| lim |
| n→∞ |
| ||||
1- (-
|
解答:解:∵
=
=
=-2,
∴由
=a,知a=-2.
∴
(
+
+
+…+
)=
=-
.
答案:-2,-
.
| lim |
| x→1 |
| x2-6x+5 |
| x2-1 |
| lim |
| x→1 |
| (x-1)(x-5) |
| (x+1)(x-1) |
| lim |
| x→1 |
| x-5 |
| x+1 |
∴由
| lim |
| x→1 |
| x2-6x+5 |
| x2-1 |
∴
| lim |
| n→∞ |
| 1 |
| a |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| lim |
| n→∞ |
| ||||
1- (-
|
| 1 |
| 3 |
答案:-2,-
| 1 |
| 3 |
点评:本题考查数列的极限,解题的关键是合理转化,消除零因子.
练习册系列答案
相关题目
若
=a,则
(
+
+
+…+
)的值为( )
| lim |
| x→1 |
| x2-6x+5 |
| x2-1 |
| lim |
| n→∞ |
| 1 |
| a |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| A、-2 | ||
B、-
| ||
C、-
| ||
| D、3 |