ÌâÄ¿ÄÚÈÝ
14£®ÈôÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=2$\sqrt{10}$£¬$\overrightarrow{b}$=£¨-4£¬2£©£¬$\overrightarrow{a}$•$\overrightarrow{b}$=20£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ£¨¡¡¡¡£©| A£® | 90¡ã | B£® | 60¡ã | C£® | 45¡ã | D£® | 30¡ã |
·ÖÎö ÀûÓÃÆ½ÃæÏòÁ¿ÊýÁ¿»ýÇó¼Ð½ÇµÄ´óС¼´¿É£®
½â´ð ½â£ºÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=2$\sqrt{10}$£¬$\overrightarrow{b}$=£¨-4£¬2£©£¬$\overrightarrow{a}$•$\overrightarrow{b}$=20£¬
¡à|$\overrightarrow{b}$|=$\sqrt{{£¨-4£©}^{2}{+2}^{2}}$=2$\sqrt{5}$£¬
¡àcos¦È=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|¡Á|\overrightarrow{b}|}$=$\frac{20}{2\sqrt{10}¡Á2\sqrt{5}}$=$\frac{\sqrt{2}}{2}$£¬
¡à$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È=45¡ã£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿¼Ð½ÇµÄ¼ÆËãÎÊÌ⣬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®ÒÑÖª¼¯ºÏA={x|x2-x-2£¾0}£¬B={x|x£¾0}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
| A£® | £¨1£¬2£© | B£® | £¨0£¬2£© | C£® | £¨2£¬+¡Þ£© | D£® | £¨1£¬+¡Þ£© |
2£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãÓëÅ×ÎïÏßy2=12xµÄ½¹µãÖØºÏ£¬Ë«ÇúÏßµÄÀëÐÄÂʵÈÓÚ$\frac{3}{2}$£¬Ôò¸ÃË«ÇúÏߵĽ¹µãµ½Æä½¥½üÏߵľàÀëµÈÓÚ£¨¡¡¡¡£©
| A£® | $\sqrt{5}$ | B£® | 4$\sqrt{2}$ | C£® | 3 | D£® | 5 |
9£®ÒÑÖªËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪP£¨X=i£©=$\frac{i}{3a}$£¨i=1£¬2£¬3£¬4£¬5£©£¬ÔòP£¨1£¼X£¼4£©µÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{5}{3a}$ | D£® | $\frac{9}{3a}$ |
3£®ÏÂÁÐÃüÌâÖеÄÕæÃüÌâÊÇ£¨¡¡¡¡£©
| A£® | ?x¡ÊR£¬x3¡Ýx2 | B£® | ?x¡ÊR£¬x3£¼x2 | C£® | ?x¡ÊR£¬?y¡ÊR£¬y2£¼x | D£® | ?x¡ÊR£¬?y¡ÊR£¬y•x=y |