题目内容
【题目】【2017南通二模19】已知函数
,
,其中e为自然对数的底数.
(1)求函数
在x
1处的切线方程;
(2)若存在![]()
,使得
成立,其中
为常数,
求证:
;
(3)若对任意的
,不等式
恒成立,求实数a的取值范围.
【答案】见解析
【解析】解:(1)因为
,所以
,故
.
所以函数
在x
1处的切线方程为
,
即
.
(2)由已知等式
得
.
记
,则
.
假设
.
①若
,则
,所以
在
上为单调增函数.
又
,所以
,与
矛盾.
②若
,记
,则
.
令
,解得
.
当
时,
,
在
上为单调增函数;
当
时,
,
在
上为单调减函数.
所以
,所以
,
所以
在
上为单调增函数.
又
,所以
,与
矛盾.
综合①②,假设不成立,所以
.9分
(3)由
得
.
记
,
,
则
.
①当
时,因为
,
,所以
,
所以
在
上为单调增函数,所以
,
故原不等式恒成立.1
②法一:
当
时,由(2)知
,
,
当
时,
,
为单调减函数,
所以
,不合题意.
法二:
当
时,一方面
.
另一方面,
,
.
所以
,使
,又
在
上为单调减函数,
所以当
时,
,故
在
上为单调减函数,
所以
,不合题意.
综上,
.1
练习册系列答案
相关题目
【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.