题目内容
(本小题14分)
在正三棱柱
中,点
是
的中点,
.
(1)求证:
∥平面
;
(2)试在棱
上找一点
,使
.
(1)证明:连接
,交
于点
, 连接
.
∵
、
分别是
、
的中点,
∴
∥
. ………3分
∵
平面
,
平面
,
∴
∥平面
. ………6分
(2)
为
的中点. ………7分
证明如下:
∵在正三棱柱
中,
,∴四边形
是正方形.
∵
为
的中点,
是
的中点,∴
, ………9分
∴
,
.
又∵
,
,∴
. ………11分
∵
是正三角形,
是
的中点,
∴
.
∵平面
平面
, 平面
平面
,
平面
,
∴
平面
.
∵
平面
,
∴![]()
. ………13分
∵
,
∴
平面
.
∵
平面
,
∴
. ………14分
练习册系列答案
相关题目
(本小题14分)在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛。
(Ⅰ)通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;
(Ⅱ)记1号、2号射箭运动员射箭的环数为
(
所有取值为0,1,2,3...,10)分别为
、
.根据教练员提供的资料,其概率分布如下表:
|
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
|
0 |
0 |
0 |
0 |
0.06 |
0.04 |
0.06 |
0.3 |
0.2 |
0.3 |
0.04 |
|
|
0 |
0 |
0 |
0 |
0.04 |
|
0.05 |
0.2 |
0.32 |
0.32 |
0.02 |
① 若1,2号运动员各射箭一次,求两人中至少有一人命中9环的概率;
② ②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.